Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Nat Microbiol ; 8(1): 121-134, 2023 01.
Article in English | MEDLINE | ID: covidwho-2185891

ABSTRACT

The coronavirus SARS-CoV-2 causes the severe disease COVID-19. SARS-CoV-2 infection is initiated by interaction of the viral spike protein and host receptor angiotensin-converting enzyme 2 (ACE2). We report an improved bright and reversible fluorogenic reporter, named SURF (split UnaG-based reversible and fluorogenic protein-protein interaction reporter), that we apply to monitor real-time interactions between spike and ACE2 in living cells. SURF has a large dynamic range with a dark-to-bright fluorescence signal that requires no exogenous cofactors. Utilizing this reporter, we carried out a high-throughput screening of small-molecule libraries. We identified three natural compounds that block replication of SARS-CoV-2 in both Vero cells and human primary nasal and bronchial epithelial cells. Cell biological and biochemical experiments validated all three compounds and showed that they block the early stages of viral infection. Two of the inhibitors, bruceine A and gamabufotalin, were also found to block replication of the Delta and Omicron variants of SARS-CoV-2. Both bruceine A and gamabufotalin exhibited potent antiviral activity in K18-hACE2 and wild-type C57BL6/J mice, as evidenced by reduced viral titres in the lung and brain, and protection from alveolar and peribronchial inflammation in the lung, thereby limiting disease progression. We propose that our fluorescent assay can be applied to identify antiviral compounds with potential as therapeutic treatment for COVID-19 and other respiratory diseases.


Subject(s)
COVID-19 , SARS-CoV-2 , Chlorocebus aethiops , Mice , Humans , Animals , SARS-CoV-2/metabolism , Vero Cells , Angiotensin-Converting Enzyme 2 , Peptidyl-Dipeptidase A/metabolism , Antiviral Agents/pharmacology
2.
PLoS Pathog ; 17(9): e1009898, 2021 09.
Article in English | MEDLINE | ID: covidwho-1394564

ABSTRACT

The respiratory disease COVID-19 is caused by the coronavirus SARS-CoV-2. Here we report the discovery of ethacridine as a potent drug against SARS-CoV-2 (EC50 ~ 0.08 µM). Ethacridine was identified via high-throughput screening of an FDA-approved drug library in living cells using a fluorescence assay. Plaque assays, RT-PCR and immunofluorescence imaging at various stages of viral infection demonstrate that the main mode of action of ethacridine is through inactivation of viral particles, preventing their binding to the host cells. Consistently, ethacridine is effective in various cell types, including primary human nasal epithelial cells that are cultured in an air-liquid interface. Taken together, our work identifies a promising, potent, and new use of the old drug via a distinct mode of action for inhibiting SARS-CoV-2.


Subject(s)
Antiviral Agents/pharmacology , Ethacridine/pharmacology , Protease Inhibitors/pharmacology , Virus Activation/drug effects , Animals , Cell Line , Chlorocebus aethiops , Coronavirus 3C Proteases/antagonists & inhibitors , Genes, Reporter , Green Fluorescent Proteins/genetics , Humans , Vero Cells , Virion/drug effects , Virus Replication/drug effects
3.
bioRxiv ; 2020 Nov 02.
Article in English | MEDLINE | ID: covidwho-915982

ABSTRACT

SARS-CoV-2 is the coronavirus that causes the respiratory disease COVID-19, which is now the third-leading cause of death in the United States. The FDA has recently approved remdesivir, an inhibitor of SARS-CoV-2 replication, to treat COVID-19, though recent data from the WHO shows little to no benefit with use of this anti-viral agent. Here we report the discovery of ethacridine, a safe antiseptic use in humans, as a potent drug for use against SARS-CoV-2 (EC50 ~ 0.08 µM). Ethacridine was identified via high-throughput screening of an FDA-approved drug library in living cells using a fluorescent assay. Interestingly, the main mode of action of ethacridine is through inactivation of viral particles, preventing their binding to the host cells. Indeed, ethacridine is effective in various cell types, including primary human nasal epithelial cells. Taken together, these data identify a promising, potent, and new use of the old drug possessing a distinct mode of action for inhibiting SARS-CoV-2.

SELECTION OF CITATIONS
SEARCH DETAIL